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IntroductIon
With communications, computation, and storage capabilities, 
IoT devices in cyberspace could deeply interact with humans 
in the physical world. With the aid of AI (Artificial Intelligence), 
AIoT (Artificial Intelligence of Things) could deeply reason 
user behavior and provide what they need via various kinds 
of AI-empowered applications. The features of high transmis-
sion rate, low latency, and ubiquitous connectivity make 5G 
a promising communication bearer to support applications of 
AIoT. For example, an intelligent factory scenario in Non-Public 
Network (NPN) where AIoT devices with 5G connectivity are 
deployed in a factory to facilitate the high-precision operations 
of manufacturing. Moreover, AIoT integrated into a vehicle 
enables autonomous driving with the assistance of low latency 
and reliable 5G communications.

The combination of core technologies of 5G, AI, and IoT, on 
the one hand, opens the door to innovation but, on the other 
hand, amplifies the security threats originating from individual 
components. Moreover, due to short release timelines, the 
design flaw and vulnerability in AIoT applications or systems 
intensify negative effects via ubiquitous connected 5G AIoT 
devices. Adversaries or cybercriminals exploit a well-known 
or zero-day vulnerability in cyberspace to gain benefits in the 

physical world from the perspective of revenue or sensitive 
information. In this case, the safety and privacy of users who 
enjoy the AIoT applications might be significantly affected, and 
the security issue of AIoT in 5G has been an ever-increasing 
concern for academic researchers, industrial practitioners, and 
specification groups [1].

The challenges of providing security to AIoT in 5G networks 
are originated from following layers
• IoT in the service layer. The cruel competition of IoT products 

forces vendors to neglect security considerations to short-
en release time, resulting in common weaknesses such as 
hard-coded passwords, unsafe random number processing, 
dangerous process execution, or dangerous memory opera-
tions [2]. The heterogeneous designs of firmware, protocols, 
controllers, peripherals, and chips in IoT devices hinder the 
development of general cybersecurity solutions. IoT endpoint 
devices’ constrained resources and inaccessibility make tradi-
tional security protections for desktops inapplicable. 

• AI in the data and model layer. By investigating the massive 
raw data captured from IoT devices using well-trained mod-
els, machine learning (ML) helps understand critical informa-
tion and knowledge to facilitate AIoT application. Different 
kinds of ML schemes are built. For example, federated learning 
is designed for massively distributed training of ML models 
among AIoT devices without accessing their local training 
datasets so that privacy is preserved [3]. Moreover, transfer 
learning provides AIoT application developers without suffi-
cient resources and effective ML models by transferring the 
learned knowledge of pre-trained models via fine-tuning. Since 
the accuracy of ML applications is data and model-dependent, 
adversaries could corrupt the learning model by launching 
data or model poisoning attacks to make the model ineffec-
tive. In particular, a backdoor is injected into the trained mod-
els in the above two scenarios to mislead the poisoned model 
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to misclassify an input with a particular trigger.
• 5G in the communication layer. The sophisticated Authenti-

cation and Key Agreement (AKA) procedures evolved from 
each generation of the cellular network provide mutual 
authentication as well as confidentiality and integrity protec-
tion between User Equipment (UE) and Core Network (CN). 
The public key protection for signaling messages exchanged 
before AKA make spoofing or relaying of message much 
more difficult. The appearance of cheap Software-Defined 
Radio (SDR) and 5G opensource enables the attack from 
rogue/fake Base Station (BS), where experimental 5G BS 
behaving same as the operational one misleads victim UE to 
achieve sensitive information stealing or service disabling [4].
In order to detect rogue BS attacks, vulnerable AIoT devic-

es, or poisoned ML models, additional security functionality 
shall be included in 5G architecture, and the edge component, 
Multi-access Edge Computing, might be an appropriate posi-
tion. MEC is designed initially to offload the task to the local 
edge servers for computation to improve latency requirements 
and reduce communication costs. Analytic techniques using AI 
and ML algorithms at MEC allow AIoT devices to obtain faster 
insights and feedback so that their operation is enhanced [5]. 
As a result, MEC can efficiently support computational intensive 
and resource-demanding AIoT applications. Researchers believe 
that the proximity to the users can compensate for the tradition-
al end-to-end security mechanism. The hierarchical CN/MEC 
security architecture is regarded as one that strikes the right 
balance between effectiveness and efficiency [2, 5–8].

This article comprehensively investigates how MEC enables 
innovative attack detection and mitigation for AIoT devices. We 
will cover possible threats from the communications, service, 
and data layers to examine if the security mechanisms in MEC 
could capture the threat in time and alleviate the damage. To 
begin with, the attacks to logic flaws or software vulnerabilities 
of AIoT service are examined using a network-traffic detector 
located in MEC. Facing the stealthy file-less attacks, MEC might 
leverage the system-level monitoring information to decide with 
higher accuracy. It can be achieved by exploiting the recent 
innovation and firmware emulation in IoT endpoint. Also, a 
detector capturing a poisoned model for AIoT service is built 
on MEC so that backdoor attacks in the data layer can be iden-
tified. Finally, we propose a novel MEC service, named M3In-
spector, to enable inspection of BS behavior at “M”obile UE and 
AIoT “M”achines. The sensed information is collected in “M”EC 
for the analysis to determine the rogue one. The result is noti-
fied to the users who subscribed to the service. The proposed 
detectors demonstrate that attack detection and mitigation can 
be implemented in the MEC paradigm to improve the security 
protection of AIoT significantly. Moreover, multiple layers of 
security controls to mitigate targeted attacks are recommended 
in MEC to provide complete protection for AIoT devices. The 

challenges of existing MEC detectors in service 
and data layers are also discussed, and possible 
solutions are suggested.

The rest of this article is organized as fol-
lows. we present MEC architecture for AIoT 
and also provides a review of existing security 
threats in AIoT from communications, service, 
and data layers. We address necessary security 
functionalities that should be included in MEC 
to detect and mitigate the mentioned threats. 
The challenges of the existing security schemes 
are also discussed. We propose a MEC service, 
M3inspector, to identify rogue BS and to notify 
subscribers with the aid of sensors in mobile 
and machines. An experiment is conducted in 
the MEC-enabled platform to examine the secu-
rity functionality of the M3Inspector. Based on 
our empirical findings, we conclude this article 
and provides some implications.

MEc-EnAblEd nEtwork ArchItEcturE
Figure 1 shows the MEC network architecture for AIoT. In 
addition to monitoring all traffic between RAN and CN, it is 
also closer to AIoT to help it analyze, predict, and respond in 
real-time. With the functionality of 5G communication and ML 
computation in IoT systems, AIoT could face multi-dimensional 
threats and attacks. The following subsections summarize the 
major ones launched at each layer.

VulnErAbIlIty AttAcks In AIot sErVIcE lAyErs
Since the Internet of Things system is not designed primarily for 
security but to maximize profits in cost, performance, power, and 
other aspects, many security threats are often caused by design 
defects, misconfiguration, and implementation bugs. However, 
the constrained computation resource makes the existing well-de-
veloped security tools impossible in IoT to resist security threats. 
The above unique properties open opportunities for adversaries 
to access AIoT devices through the following manners.
• Malware infection. Recently, IoT botnets and malware 

received lots of attention due to Mirai’s significant damage to 
global websites. The source-code release of Mirai has given 
rise to several variants and sped up botnet creation. By lever-
aging similar tactics, these attacks targeting IoT endpoint 
devices search for unprotected ones, compromise them, turn 
them into bots, and harness the collective power to launch 
DDoS attacks. As shown in Fig. 1 (1), The infection is typical-
ly achieved by brute force password guessing. The malicious 
binary delivered to the victim will be executed so that the 
following infection and replication are also accomplished.

• File-less attack. Instead of downloading and executing mal-
ware files, hackers exploit existing or unknown vulnerabili-
ties on the victim devices to achieve file-less attacks [9]. As 
shown in Fig. 1 (2), Without transporting the malicious binary 
and possessing it inside the hard drive, file-less attacks are 
harder to fingerprint and, thus, are highly suitable to conduct 
attacks such as privilege escalation, data theft, information 
exposure, or network compromise.
Nevertheless, many AIoT devices will be connected to the 

cellular network in the smart venue. MEC devices with a Mal-
ware detection mechanism can be deployed to protect the 
underlying infrastructure.

bAckdoor AttAcks In dAtA And ModEl lAyErs
In the AIoT paradigm, AIoT devices provide a large amount of 
sensing data for further recognition and understanding in AIoT 
applications. The accuracy of these applications highly depends 
on the collected data and ML models. In this case, malicious 
users could leverage this key dependency to influence the AIoT 
applications by manipulating models or poisoning data, espe-
cially with backdoor attacks.

Figure 1. MEC-enabled network architecture for AIoT applications and IoT malware 
& file-less attacks.
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Training Data Corruption. The adversary could directly 
modify the raw data collected for training to enforce the ML 
model to make a wrong prediction, classification, or inference. 
In particular, part of the training data is injected through back-
door triggers, and the labels of these poisoned samples are 
modified to the target category. The high correlation between 
the backdoor triggers and targets is enhanced during the train-
ing process, making the model misjudge the input samples with 
backdoor triggers.

Model Manipulation. In the popular federated learning and 
transfer learning scenarios, respectively, designed to preserve 
privacy and reduce computation cost, the ML model is accessi-
ble and then adjustable. In this case, the neurons in the neural 
network can be modified the original inference logic is manip-
ulated. When a victim model transfers the learned knowledge 
of a pre-trained, the poisoned model, the backdoor inside the 
poisoned model, is also transferred.

The AIoT devices will send the parameters of their respec-
tive mods back to the central server through federated learning 
to generate better mods and then update them to each device. 
The advantage of MEC deployment location is that it can pro-
tect the transmission between devices.

roguE bs AttAcks In coMMunIcAtIons lAyEr
As we mentioned earlier, the appearance of cheap Soft-
ware-Defined Radio (SDR) makes rogue BS attacks back to 
their feet. Researchers could easily establish experimental 5G 
BSs using open-sourced 5G software (e.g., srsLTE and OAI). 
The rationale behind AKA implies that AIoT will trust the unpro-
tected broadcast signals before AKA if the format of signals 
is correct, which are exploited by adversaries to launch rogue 
BS attacks. Rogue BS broadcasts the same messages as the 
operational cell and may use the same identity to make itself 
indistinguishable from the legitimate ones. Adversary could 
attract AIoT to connect itself by transmitting a more robust sig-
nal than those of the legitimate operational BSs. Following the 
instructions from the rogue BS, the victim AIoT devices might 
perform harmful actions, belief crafted information, or reveal 
their private information [4]

Figure 2 presents the steps of infamous DoS Attack via 
Attach/TAU/Service Reject message [4]. The details 
are described as follows.
•  Step 1. The attacker (i.e., the rogue BS) attracts victim AIoTs 

to camp on itself by transmitting a stronger signal than legiti-
mate operational BSs. 

•  Step 2. AIoT device connected to the rogue BS is unaware 
of the existence of rogue BS and makes normal opera-
tions. For example, they send the Attach/TAU/Service 
Request message to the connected BS depending on the 
current situation. 

•  Step 3. When receiving Attach/TAU/Service Request 
message from the victim AIoT device, the rogue BS injects 
“EPS Service Not Allowed” containing EMM cause #7 into 
the Attach/TAU/Service Reject message so that 

the victim AIoT device thinks that the requested service is 
invalid. Then the victim AIoT device will not actively connect 
to other legitimate BSs nearby until its 5G communication 
operation is restarted, thereby realizing a DoS attack.
Such a DoS attack damages AIoT applications, especially in 

intelligent factory scenarios. The availability is the first security 
requirement for industrial IoT devices since even the temporary 
shut down of operation will result in significant financial losses. 
The malicious competitor could easily launch a rogue BS attack 
to interrupt the regular operation without being spotted. As a 
result, a good approach to identifying a rogue BS attack and 
mitigating its impact is critical.

Due to the location advantage of MEC deployment, all the 
traffic transmitted between CN and RAN can be seen. There-
fore, a series of malicious attack detection mechanisms can be 
designed on MEC, such as the detection mechanism of Rouge 
BS attack or even malicious traffic attack mechanism.

MEc sEcurIty ArchItEcturE
As the middle layer between the CN layer and the AIoT device 
layer, MEC enables data processing, analysis, and storage. Fac-
ing the various kinds of stealthy attacks from various layers 
mentioned in the previous section, the additional security func-
tionalities should be developed in MEC to assess AIoT devices 
and their vulnerabilities, as well as to infer and characterize 
IoT-centric malicious activities, which is known as detection. 
Once exploitation attempts are identified, mitigate can be 
achieved to protect AIoT devices against multiple attacks. We 
summarized the necessary functionalities in each layer.
• Service layer. The security function in MEC will monitor the 

data plane payload decapsulated from the lower layer (i.e., 5G 
communication layer). For example, the ML model is utilized 
to understand the network behavior by monitoring the data 
plane traffic so that malware download, flooding attacks, or 
file-less attacks can be identified [6, 7]. In this case, MEC acts 
as an Intrusion Detection Systems (IDSs), monitoring the net-
work and detecting malicious activities so that vulnerable AIoT 
devices are protected. For example, malware typically delivers 
malware using busybox or pipeline, MEC could checks specif-
ic commands in payloads of Telnet and SSH, such as curl, 
wget, tftp or echo, and investigates the downloaded binary 
following those commands [2, 9].

 By further leveraging the decapsulated control plane payload, 
MEC could determine the malicious attempts from users in 
RAN and take reaction in time [8]. In this case, MEC-level 
access control is achieved, where abuse of resources in MEC 
from unauthorized traffic is prevented.

• Data and model layer. In order to find out the manipulated 
data or model transferred from the malicious AIoT devic-
es, MEC should be capable of understanding the training 
data and model [5, 7]. For example, MEC could analyze the 
inner neuron behaviors to determine the suspicious model. 
In particular, we supply appropriate stimulus to the model 
and check if neurons in the model substantially elevate the 
activation of a particular target label. The determination of 
compromised models in MEC could mitigate the negative 
impacts caused by the poisoned models.

• Communication layer. The 5G protocol monitoring function is 
an essential must for MEC so that fundamental traffic redirec-
tion or forwarding can be achieved. As shown in Fig. 3, MEC 
can decapsulate the data plane traffic from AIoT to get the 
payload in the IoT service layer. Depending on the intention 
of the packet sender, the payload will be forwarded to the 
local application server or encapsulated using 5G protocols for 
further delivery to CN. Sometimes, control plane packets also 
need to be decapsulated to offer payload to the upper layer to 
achieve complicated detection or mitigation [8].

chAllEngEs
As shown in Fig. 3, to enable complete protection for AIoT 

Figure 2. Procedure of rogue BS attacks.
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devices, MEC should be capable of detecting and mitigating 
attacks in all layers. The mechanism for detecting IoT Flow-
based attacks is deployed on the gateway [10], which aggre-
gates traffic from all devices and determines before an attack 
through ML. Due to the advantage of the MEC deployment 
location, all traffic from Control planes and User planes will pass 
through, so [8, 11] proposed to deploy a mechanism to detect 
malicious traffic is deployed on the MEC. This DDoS attack is 
triggered after the attack is detected and cannot be blocked 
earlier. We classified these and sorted them out in Table 1. 
Although many existing MEC-enabled solutions are proposed 
at the service and data layer, no communication-layer solu-
tion is designed in MEC to detect rogue BS attacks. Moreover, 
detecting poisoned data and ML models is far from mature and 
remains an open problem [5]. The high false alarm in malicious 
ML model detection will disturb the users, and the acceptance 
of the detector might not be explored.

The most critical problem for existing detectors in the 
service layer is that the sensed network packets might not 
completely reflect the attack behavior to vulnerable AIoT 
devices even with the aid of ML model [2, 9]. In particular, 
the malicious payloads generated by the sneaky malware or 
compromised devices are mixed with the regular traffic and 
are complex to determine precisely. The popularity of file-
less attack without carrying recognizable payload make net-
work-traffic-based IDS at the MEC much more challenging. If 
system-level monitors are involved, we can capture not only 
network traffic but also commands or system calls executed so 
that attack can be identified precisely [9].

By virtually re-hosting firmware into emulated IoT systems, the 
executions of service and application are decoupled from the 
IoT hardware. As a result, the vulnerability of IoT devices can be 
detected and analyzed based on virtualized machines. By inte-
grating an advanced monitoring module in the virtualized system, 
system-level behavior can be captured so that attacks and mal-
ware can be identified more accurate fashion [2].

M3InspEctor: dEtEctIon of AttAcks
In order to alleviate the damage caused by rogue BS attacks, 
some protection or detection mechanisms are necessary and 
thus received lots of attention in recent literature [12–14]. Typi-
cally, the existing solutions deploy sensors to collect information 
sent from a targeted BS for distinction. In particular, sensors 
estimate the physical position of a targeted BS and check if its 
located in the appropriate position by comparing the location 
of legal operational BSs (e.g., FBS-Radar [12] and Crocodile 
Hunter [13]). Another example is that PHOENIX [14] inves-
tigate the sequence of Non-Access Stratum (NAS) message 
received at the sensors to determine the behavior of a targeted 
BS in an efficient approach.

In the 5G network, MEC is a perfect position to enable the 
detection and reaction of rogue BS since it could perform the 
corresponding actions in time. We propose a novel M3In-
spector, where sensors in “M”obile UE and AIoT “M”achine 
cooperate with “M”EC to determine a rogue BS attack. In par-
ticular, we leverage information at different layers collected 
from sensors to provide high-accuracy detection results. We 
found that in addition to a much stronger power sent by the 
rogue BS for the victim attraction or a crafted NAS message 
sequence [14], RF properties due to limited physical capabilities 
in the low-cost hardware can be applied as feasible indicators 
of rogue BS. In particular, in the proposed detector, we inves-
tigate the behavior of signal power measured in particular RRC 
and NAS messages to identify if the transmitter is equipped with 
unstable RF hardware.

nEtwork ArchItEcturE
As shown in Fig. 4, M3Inspector consists of the following com-
ponents: 
• An entire legitimate cellular network consists of AIoT devic-

es, operational BS, MEC, and CN. We use two mainframes 
with the same Intel Core i5 6500 CPU, 4-core, and 24GB 
RAM, plus two SDR combined with four antennas to simu-
late an operational BS that can transmit or receive signals. 
USRP-B210 and srsRAN are respectively selected as SDR and 
5G opensource. Moreover, MEC with redirection and en/
decapsulation capabilities are implemented to connect oper-
ational BS and CN. 

• An isolated rogue BS launching malicious attacks. It is 
implemented using SDR and srsRAN and is for the trustful 
evaluation of the detection effectiveness. We choose a rep-
resentative DoS attack using a malicious Attach/TAU/
Authentication Reject message sent from a rogue 
BS to disable victim AIoT devices practically. Please note that 
existing detection solutions like FBS-Radar [12] and Crocodile 
Hunter [13] did not implement rogue BS for the detection. 
They mainly investigated the identification of anomalies or 
misconfiguration.

• Sensors in machine and mobile for data collection. For the 
sensors in AIoT machine and mobile UE, we leverage respec-
tively srsUE with USRP-B210 and Mobileinsight [15]. The 
information collected by the sensors will be delivered to 
MEC for rogue BS determination.

• The machine can be used for data collection and firmware 

Table 1. Current method of defending malicious traffic.

Detecting 
the position Feature The Pre/

Post-attack

[10] Gateway Dependencies of IP MAC 
addresses ports Pre-attack

[11] MEC Src/Dst IP,Port Protocol 
Packet Length Post-attack

[8] MEC GTP Tunnel ID IP Post-attack

Figure 3. MEC protocol layers.

Figure 4. M3Inspector
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simulation. User Plane traffic is imported into the simulation 
environment, and its traffic is analyzed and tested. If the traf-
fic is detected as malicious, it can be blocked in the emulated 
environment, so it will not infect other devices.

dEtEctIon MEchAnIsM
Malicious Traffic Detection. We conduct Malware attacks 

on this environment, collect data, and train it into a detec-
tion model. Devices that attack AIoT can also attack through 
file-less. Since most of the models used to detect malicious 
attacks are flow-based, it is impossible to accurately judge file-
less attacks and know what happens after file-less attacks are 
launched. Due to space limitations, we are sorry that we cannot 
give a detailed description in the Collection phase and training 
phase of Malicious Traffic Detection. Therefore, we need to 
collect system layer information through Emulation so that we 
can detect the attack earlier and improve the overall security.

Rogue BS Attacks Detection. The rationale behind M3In-
spector is that the unstable RF properties in the low-cost hard-
ware are feasible indicators of rogue BS. We exploit signal 
strength of the base station and infamous NAS attack vector 
Attach Reject. The signal strength of these messages sent 
from rogue and operational BSs act differently, which is lever-
aged in our detector. Three phases are designed in M3Inspec-
tor to identify rogue BS.
• Collection phase. The mobile and machine inspectors are 

designed to receive messages from legitimate and rogue BSs. 
To collect real Attach Reject messages from operational 
BS, we use an expired commercial SIM card to request ser-
vices from legitimate operators. We also launch a DoS attack 
on the rogue BS by sending malicious Attach Reject.

• Training phase. We observe that the signal strength sent by 
operational BS is small and stable while that for rogue BS is 
much larger. We found from the isolated rogue BS attack 
behavior that the rogue BSs must send a signal strength 
greater than all BSs in the environment to attract mobile or 
machine connections, so we collected one signal strength 
every 10 ms from the BS with the strongest signal strength in 
neighbors BSs, and then using the standard deviation to sta-
tistically measure the behavior of rogue and operational BSs 
in transmission power stability, we further make a threshold 
between two BSs.

• Detection phase. The mobile and machine inspector decodes 
the real-time signaling and transmits the corresponding strength 
to MEC, which determines whether the signal strength collect-
ed continuously by the mobile and machine is greater than the 
threshold calculated from the training dataset and detects the 
presence of Attach Reject in signaling by Mobileinsight. If 
yes, MEC will consider the message is from the rogue BS. The 
users who subscribed to the service will receive a notification 
from MEC to indicate a rogue BS attack.

ExpErIMEntAl rEsults
Malicious Traffic Detection: Detecting Malware attacks focus 

on what the attacker has done by compromising the device but 
ignores the traffic generated by the attacker prior to the attack 
[8, 11]. We trained the model using about the one million data-
sets generated by Malware and tested the traffic generated 
before the Malware attack. The results in Table 2 show that the 
Accuracy is 94.8 percent, but the Precision is only 67.9 percent 
because the malicious traffic in the test dataset is a minority, so 
when the model predicts wrongly, there is no significant perfor-
mance in Accuracy, while in Precision, it can be seen that a lot 

of legitimate traffic is judged as malicious traffic, which is why 
the Precision is so low. Therefore, we can import the traffic into 
our M3Inspector Machine to help the model analyze the traffic 
through the emulated environment and ensure that other com-
ponents are protected from malicious attacks.

Rogue BS Attacks Detection. The signal strength of the oper-
ational BSs is more stable than that of the rogue BSs [12–14], 
so we collect ten consecutive sets of datasets from the opera-
tional BSs in the training phase and select the worst value as the 
threshold value. We finally collect the signal strength of 500 sets 
of operational BSs and 500 sets of rogue BSs that send Attach 
Reject and predict the signal strength of 1000 datasets by the 
threshold value we calculated. The results are shown in Table 2. 
Table 2 shows that our detector has an accuracy of 91 percent 
in identifying Attach Reject attacks sent by rogue BSs. 
The experimental results prove that the chosen RF properties 
could reflect the capability of testing hardware, thereby acting 
as a more appropriate feature to distinguish behavior between 
rogue and operational BSs. By combining with the PHOENIX 
[14] who investigate the NAS message sequence, we believe 
M3Inspector can achieve higher accuracy.

conclusIon
Locating closer to the vulnerable AIoT devices in the 5G net-
work, MEC is proved in this article as a suitable position to 
enable security functionality to detect and mitigate attacks in 
a timely manner. This article examines security threats and cor-
responding possible security mechanisms at MEC respectively 
in communications, service, and data layers for AIoT applica-
tions. The popular network-traffic-based IDS could capture the 
existence of infamous IoT malware attacks, while a detector in 
the data layer might identify poisoned models. Regarding the 
communications layer, we propose a novel platform, M3Inspec-
tor, where MEC utilizes the signal strength of RRC and NAS 
messages provided to determine rogue BS attacks. We conduct 
experiments in a MEC-enabled 5G environment to demonstrate 
the effectiveness of the M3Inspector. We also discuss ongoing 
research challenges and open research questions related to 
attack detection and mitigation in MEC. In summary, we pro-
vide the following two implications for how to enable more 
effective protection for AIoT devices at MEC.
• The full protections of AIoT devices are contributed by secu-

rity efforts in all layers. Even though many existing solutions 
are proposed in the service layer to identify various clas-
sic attacks on AIoT devices, the unawareness of backdoor 
attacks on ML models still makes AIoT applications malfunc-
tion. In this case, MEC needs to consider threats and vulner-
abilities from all aspects and design detection and mitigation 
schemes accordingly. 

• The popularity of file-less attacks without obvious signatures 
makes service-layer detectors at MEC ineffective. We suggest 
that introducing IoT firmware re-hosting is a promising solu-
tion where system-level behavior can be captured and further 
analyzed to increase detection accuracy. Such a “system layer” 
solution in MEC acts as the fourth pillar to make detecting and 
mitigating AIoT threats more powerful and reliable. 
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